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Abstract. We develop number theoretic tools that allow us to perform computations relevant
for the quantum mechanics over finite fields of arbitrary, odd size, with the same speed-up that
is enjoyed by the fast Fourier transform.

Recent developments in non-perturbative string theory, the discovery of D branes [1]
and their dynamics, have revealed a new sector of heavy solitonic objects through which
distances below string scales can be probed in the weak-coupling regime (non-relativistic
limit) [2]. It seems that the most fundamental of these solitonic objects, the D0 branes, have
low-energy effective Lagrangian the one-dimensional reduction of a 10d supersymmetric
Yang–Mills (YM) system, the so-called SUSY YM quantum mechanics. Indeed a stack
of N D0 branes hasSU(N) SUSY YM quantum mechanics as its low-energy effective
Lagrangian [3, 4] and the target space collective coordinates of the D0 branes becomeN

by N Hermitian matrices functions of time (YM gauge potentials) and their SUSY partners.
This implies that a non-commutative geometry setting is emerging for the description of the
dynamics of D0 branes [5].

All the above has been lifted to the level of a candidate for the M-theory, (the theory
which presumably unifies all known string theories), the famous by now M(atrix) theory [6]
Curiously enough, the above picture resembles the (now some years old)SU(N) truncation
[7] of the excitations of the supermembrane theory in 11 dimensions [8] in analogy with
the bosonic membraneSU(N) truncation [9, 10].

Closer to the D0 picture comes the work of [10], where the discretized membrane
and its non-commutative geometry, finite quantum mechanics (FQM) was introduced, as
a consistent truncation of the bosonic membrane and its dynamical symmetry: that of the
area-preserving diffeomorphism group. In this discretized version of the membrane the
elementary excitations’ degrees of freedom were assumed to be one-particle states living on
the membrane, like particles in discrete phase spaceZN ×ZN . A physical analogue system
of these elementary excitations was proposed to be the quantum Hall effect of one electron
on a magnetic lattice of rational magnetic flux per plaquette. The Hilbert space of these
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elementary excitations is finite-dimensional and the quantum mechanics of linear quantum
maps was further developed in [11–13]. TheSU(N)matrices of the YM quantum mechanics
can be thought of as coherent states of such elementary excitations. The difference with
the above-mentioned model of elementary excitations of the membrane is that time is also
discrete and the motion of these excitations is typically random and chaotic—a fact which at
the quantum level is translated into extended, random wavefunctions for typical eigenstates.

Although we are far from a realistic scenario for the role of these elementary excitations
for the quantum dynamics of the SUSYSU(N) quantum mechanics we believe that
further technical developments are necessary in order to acquire better understanding of
the situation.

On a more mathematical side FQM has been developed so far using representation
theory of the modular groupSL(2,ZN), the linear canonical transormation group of the
elementary excitations, for values ofN , prime or powers of primes. In this letter we treat
the case of general odd integersN , using prime decomposition and the Chinese remainder
theorem for the modular group and its representations. The case of integersN = 2n and
general integers will be dealt with elsewhere.

An immediate practical consequence of our work is the possibility to extend the fast
Fourier transform for any oddN to the metaplectic representation of the modular group
SL(2,ZN).

We now recall the basic features of FQM.
The torus phase space has been the simplest prototype for studying classical and quantum

chaos [14–17]. Discrete elements ofSL(2,R), i.e. elements of the modular groupSL(2,Z),
are studied on discretizations of the torus with rational coordinates of the same denominator
l, (q, p) = (n1/l, n2/l) ∈ 0, n1, n2, l ∈ Z and their periodic trajectories mod 1 are examined
studying the periods of elementsA ∈ SL(2,Z) mod l. The action mod 1 becomes mod
l on an equivalent torus,(n1, n2) ∈ l0. The classical motion of such discrete dynamical
systems is usually ‘maximally’ disconnected and chaotic [15, 17].

FQM is the quantization of these discrete linear maps and the corresponding one-
timestep evolution operatorsU(A) are l × l unitary matrices calledquantum maps. In
the literature [16, 17] these maps are determined semi-classically. In [11, 12] the exact
quantization ofSL(2,Fp), whereFp is the simplest finite field ofp elements withp a
prime number was studied in detail. In [13] these results were extended to powers of
primes,pn—the group is thenSL(2,Zpn).

The Hilbert spaceH0 of the wavefunctions on the torus0 = C/L of complex modulus
τ = τ1 + iτ2, whereL is the integer latticeL = {m1 + τm2|(m1, m2) ∈ Z× Z}, is defined
as the space of functions of complex argumentz = x + iy

f (z) =
∑
n∈Z

cne
iπn2τ+2π inz (1)

with norm [11]

‖f ‖2 =
∫

e−2πy2/τ2|f (z)|2 dx dy τ2 > 0. (2)

Consider the subspaceHl(0) of H0 with periodic Fourier coefficients{cn}n∈Z of period l

cn = cn+l n ∈ Z, l ∈ N. (3)

The spaceHl(0) is l-dimensional and there is a discrete Heisenberg group [18], with
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generatorsS1/l andT1 acting as [19, 20]

(S1/lf )(z) =
∑
n∈Z

cne
2π in/le2π inz+π in2τ

(T1f )(z) =
∑
n∈Z

cn−1e2π inz+π in2τ cn ∈ C.
(4)

On thel-dimensional subspace of vectors(c1, . . . , cl) the two generators are represented by

(S1/l)n1,n2 = Qn1,n2 = ω(n1−1)δn1,n2

(T1)n1,n2 = Pn1,n2 = δn1−1,n2

(5)

with ω = exp(2π i/l). The Weyl relation becomes

QP = ωPQ (6)

and the Heisenberg group elements are

Jr,s = ωr·s/2P rQs. (7)

The generatorsJr,s satisfy the following composition law:

Jr,sJr ′,s ′ = ω(r ′s−s ′r)/2Jr+r ′,s+s ′ (8)

and the ‘commutation’ relations

Jr,sJr ′,s ′ = ωr ′s−s ′rJr ′,s ′Jr,s . (9)

The metaplectic representation ofSL(2,Zl) is defined by the relation

U−1(A)Jr,sU(A) = J(r,s)A (10)

whereA is an element ofSL(2,Zl). In the literature the metaplectic representation of
SL(2,Zl), (the group of 2× 2, integer-valued matrices modl), is known forl = pn [21]†

The Weyl–Fourier form ofU(A) is [13]

U(A) = σ(1)σ (δ)

pn

pn−1∑
r,s=0

e
2π i
pn

[br2+(d−a)rs−cs2]/2δJr,s (11)

where

A =
(
a b

c d

)
∈ SL(2,Zpn) δ = 2− a − d

σ(x) = 1√
pn

pn−1∑
r=0

ωxr
2
.

(12)

All the operations in the exponent are carried out modpn. If δ ≡ 0 modpn we use the
trick (

a b

c d

)
=
(

0 1
−1 0

)(−c −d
a b

)
(13)

and the fact thatU(A) is a representation (cf [13] and below).
We shall now work out some technical details of the representation theory ofSL(2,ZN)

that we need for the factorization of the Heisenberg group and of the metaplectic
representation.

We start with the Chinese remainder theorem for numbers [23]. LetN ∈ Z be a
non-prime, that may be written as a product of two co-prime factors,N1 andN2, namely

† The representation theory of the symplectic groupSL(2,Fpn ), over the finite fieldFpn , may be found in [22].
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N = N1N2. We denote byNZ the set of all multiples ofN . Then anyr ∈ Z/NZ may be
written uniquely as

r = r1m1n1+ r2m2n2

where r1 ≡ r modN1, r2 ≡ r modN2, m1 = N/N1, m2 = N/N2, n1 = m−1
1 modN1,

n2 = m−1
2 modN2.

In other words, we may establish a one-to-one correspondance between the number
r and the 2-tuple(r1, r2). This defines theSino representationof r. This 2-tuple may be
promoted to a bona fide element of a setV (2)N , whose elements have the following properties,
for any two numbersr, r ′ ∈ Z/NZ:

r × r ′ ↔ (r1r
′
1 modN1, r2r

′
2 modN2)

and

r + r ′ ↔ (r1+ r ′1 modN1, r2+ r2 modN2).

We can immediately generalize this result to the case in whichN = N1 × N2 × · · ·Nk
where all pairs of factors are co-prime. The decomposition reads

r = r1m1n1+ r2m2n2+ · · · + rkmknk
where mi = N/Ni , ni ≡ m−1

i modNi and one may similarly establish a one-to-
one correspondance betweenr and thek-tuple (r1, r2, . . . , rk) element of the setV (k)N .
Furthermore note thatVN has the property

VN ↔ VN1 ⊗ VN2 ⊗ · · · ⊗ VNk .
Using these relations it is now possible to establish that

SL(2,ZN) = SL(2,ZN1)× SL(2,ZN2)× · · · × SL(2,ZNk ). (14)

Indeed, consider the casek = 2 and an element ofSL(2,ZN) of the form

A =
(
a b

c d

)
↔
(
(a1, a2) (b1, b2)

(c1, c2) (d1, d2)

)
. (15)

It will now be shown that this element is an element of the setSL(2,ZN1) × SL(2,ZN2)

Consider a generic element ofSL(2,ZN1). It may be written as

A1 =
(
(a1, 1) (b1, 0)
(c1, 0) (d1, 1)

)
. (16)

Take now a generic element ofSL(2,ZN2), that may be written

A2 =
(
(1, a2) (0, b2)

(0, c2) (1, d2)

)
. (17)

It is straightforward to check thatA1 ·A2 = A. Using the Chinese remainder theorem for
numbers we know that the decomposition is unique.

Let us close with the remark that the matrices of the form(
a b

−b a

)
(18)

with a2 + b2 ≡ 1modN generate the groupO2(N) C SL(2,ZN). Once more it is possible
to show that

O2(N) = O2(N1)×O2(N2) (19)
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namely (
a b

−b a

)
=
(
(a1, 1) (b1, 0)
(−b1, 0) (a1, 1)

)(
(1, a2) (0, b2)

(0,−b2) (1, a2)

)
. (20)

In the following we discuss the implications of the factorization ofSL(2,ZN) (cf previous
discussion) for the metaplectic representation. We begin with the factorization of the
Heisenberg grouph(N = N1N2) (cf the work of Schwinger in [18]).

Indeed, using the Chinese remainder theorem and the commutation relations of theJr,s ,
we find

Jr,s = Jr1m1n1+r2m2n2,s1m1n1+s2m2n2

= Jr1m1n1,s1m1n1Jr2m2n2,s2m2n2

= Jr2m2n2,s2m2n2Jr1m1n1,s1m1n1

since the extra phase factor equals unity.
We shall now use the factorization properties of the Heisenberg group generators,Jr,s

to obtain the decomposition of the unitary operatorU(A), A ∈ SL(2,ZN), that governs
the time evolution of the quantum system in the case in hand. To do this we recall that the
evolution of the generatorsJr,s is given by

U−1(A)Jr,sU(A) = J(r,s)A. (21)

If N = N1N2, thenA = A1 ·A2, with A1 ∈ SL(2,ZN1) andA2 ∈ SL(2,ZN2). We shall
show thatU(A) = U(A1) · U(A2).

Proof. U(A) may be written as a linear combination of the generatorsJr,s as

U(A) = σ(1)σ (δ)

N

N−1∑
r,s=0

ω(br
2+(d−a)rs−cs2)/(2δ)Jr,s (22)

where

A =
(
a b

c d

)
.

Using the Sino representation,xr2 = (x1, x2)(r
2
1, r

2
2) = (x1r

2
1, x2r

2
2) = x1r

2
1n1m1+x2r

2
2n2m2

and the double sum is seen to split into the product of two sums

1

N

N−1∑
r=0

ωxr
2 = 1

N1N2

N1−1,N2−1∑
r1,r2=0

e2π i(x1r
2
1n1m1+x2r

2
2n2m2)/(N1N2)

=
(

1

N1

N1−1∑
r1=0

e2π im1x1r
2
1/N1

)(
1

N2

N2−1∑
r1=0

e2π im2x2r
2
2/N2

)
(23)

which leads to the relation

σ(x) = σ(m1x1)σ (m2x2). (24)

This takes care of the prefactor. The phase is re-arranged as follows:

φ ≡ (br2+ (d − a)rs − cs2)/(2δ) = ((b1r
2
1 + (d1− a1)r1s1− c1s1)/(2δ1))m1n1

+((b2r
2
2 + (d2− a2)r2s2− c2s2)/(2δ2))m2n2 = φ1N2m1+ φ2N1m2.
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The upshot of this is thatU(A) may be rewritten as

U(A) = σ(m1δ1)σ (m2δ2)

N1N2

N1−1,N2−1∑
r1,r2=0

ω
m1φ1
N1

ω
m2φ2
N2
Jr1m1n1,s1,m1,n1Jr2m2n2,s2m2n2

= σ(m1δ1)

N1

N1−1∑
r1=0

ω
m1φ1
N1
Jr1m1n1,s1m1n1

σ(m2δ2)

N2

N2−1∑
r2=0

ω
m2φ2
N2
Jr2m2n2,s2m2n2

= U(A1) · U(A2).

As a consequenceU(A1) and U(A2) commute. Now we establish an isomorphism
betweenU(A1) andU(A2) with U1(A1) andU2(A2), whereU1 andU2 are the metaplectic
representations of dimensionN1 andN2 respectively. Indeed we shall exhibit a permutation
matrix R with the properties

RPRT = P1⊗ P2

RQRT = Q1⊗Q2

RJr,sRT = Jr1,s1 ⊗ Jr2,s2
RU(A)RT = U1(g1)⊗ U2(g2)

whereP andQ (Pi , Qi ,i = 1, 2) are the generators of the Heisenberg grouph(N) (resp.
h(Ni)).

It is enough to prove that the matrixR has the property

Rek = ek1 ⊗ ek2 (25)

whereek (eki ,i = 1, 2) are the eigenvectors ofP (resp.Pi , i = 1, 2) and the indices run as
k = 1, . . . , N , ki = 1, . . . , Ni , i = 1, 2. The other properties indeed are consequences of
this.

We start with an explicit form for the eigenvectors ofP

ek,l = ωk(l−1)

√
N

k, l = 1, . . . , N. (26)

Using the Sino representation we find

ω
k1(j1−1)m1n1+k2(j2−1)m2n2
N √

N1N2
= ω

k1(j1−1)m1
N1√
N1

ω
k2(j2−1)m2
N2√
N2

. (27)

In order to construct the matrixR, we compare the r.h.s. of equations (25), (27). The indices
j1 andj2, in equation (27), from the Sino decomposition ofj , run from 1 toN1 (resp.N2)
and the corresponding values ofj fill up anN1×N2 array. On the other hand, the r.h.s. of
equation (25) defines, through the tensor product, a decomposition ofj into indicesj1 and
j2 and defines anotherN1 × N2 array, that is related to the previous one by a permutation
matrix, namelyR. Specifically, if we denote the Sino decomposition array by

{j1, j2} (28)

the matrixR, with rows indexed byi and columns indexed byj , has elements equal to 1
when{j1, j2} = i and zero otherwise. This construction is straightforwardly generalized to
more than two co-prime factors ofN (cf the book by Schroeder in [23]). The stationary
eigenvalue problem for the unitary evolution operatorU is reduced to that corresponding to
each individual factor of the tensor decomposition of the matrixU (e.g. in the case where
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N1 andN2 are powers of primes of the type 4k + 1 explicit expressions are known for the
eigenvectors and eigenvalues [12, 13]).

The matrixR is used in (classical) fast Fourier algorithms to reduce the number of
operations from O(N2) to O(N logN) [23]).

By construction, therefore, the property in equation (25) holds and this implies the
decomposition of theP operator. The decomposition of theQ operator follows immediately,
since it is diagonal in this basis and the operations may be carried out element by element.
From these both the decomposition of theJr,s andU(A) follow since (as may be checked)
RRT = I . �

We close with the following remarks. The caseN = 2n cannot be studied by the
methods developed here and new ideas are required. This case is, of course, particularly
interesting for computational reasons. Indeed, all existing fast Fourier algorithms are given
for N = 2n. For powers of primes a similar speed-up of operations may also be obtained (cf
Schroeder in [23]). On the other hand, what we have achieved here is the construction of
fast algorithms forany oddN and forany quantum mapthat is a metaplectic representation
of SL(2,ZN).

It would be interesting to implement such maps by quantum gates, as already proposed
for the quantum Fourier transform [24].
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